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Criticality and oscillatory behavior in non-Markovian contact process
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A non-Markovian generalization of a one-dimensional contact process is being introduced in which every
particle has an age and will be annihilated at its maximumagddere is an absorbing state phase transition
which is controlled by this parameter. The model can demonstrate oscillatory behavior in its approach to the
stationary state. These oscillations are also present in the mean-field approximation, which is a first-order
differential equation with time delay. Studying dynamical critical exponents suggests that the model belongs to
the direct percolation universality class.
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I. INTRODUCTION while every existing particle will die exactly at age For
large values ofr the particles live enough to reproduce

Studying phase transitions in the systems far from equiplenty of others and the system can remain in its active state.
librium has been a topic of growing interest in recent yearsAs 7 is decreased, each particle has less time to create other
[1,2]. In particular, systems with absorbing states which canparticles and forr< 7. the system will be trapped in its ab-
not evolve further once they are trapped in one such statsorbing state with probability 1, where there is no existing
have been an interesting subject of research. Various modejgirticle and no new particles can be born.
with one or more absorbing states have been studied which Attributing age to the particles in the CP model has been
belong to a few universality classes and mostly to that okuggested earlidrL4], but not in a way that leads to a non-
directed percolatioDP). According to the DP conjecture \arkovian model; although some interesting alterations in
[3,4], every phase transition in a system with a single absorbthe dynamical behavior of the system have been observed.
ing state having short-range interactions with no special Non-Markovian property gives rise to some oscillations in
symmetry or quenched disordgs] belongs to the DP class. the density of particles. These oscillations are also supported
There have been examples of absorbing state phase trang'y the mean-field approximation. Because of the non-
tions without some of the DP conjecture conditions that stillpjarkovian property of the system, there is a delay parameter
belong to the DP class, such as systems with an infinite nump, the mean-field equation and this reproduces the oscillatory
ber of absorbing state5,7]. There have also been other gojutions observed in the simulations. By the mean-field ap-
universality classes for parity conserving systéBisand, as  proach, existence of the phase transition is justified and a
recently proposed, for systems with infinitely many absorb-ritical age can be found, but like standard CP the critical
ing states coupled to a conserved fig8d10]. behavior is not described completely.

Although the Markovian property has been implicitly ac- | this paper, the critical behavior of the model is studied
cepted in these models it is not essential for a nonequilibriunysing the time-dependent Monte Carlo method. The critical

phase transition. Usually, adding some kind of memory togynamical exponents has been calculated, and shown to be in
the system, such that the system should refer to its history i§ood agreement with those of DP.

order to define its future, gives rise to some new interesting
behaviors that are absent in Markovian systehg,17.
However, properties of non-Markovian nonequilibrium
phase transitions have not been studied.

In this paper a non-Markovian variant of the contact pro- The model is defined on a one-dimensional lattice and
cess(CP) [13] is introduced and the critical behavior is in- with continuous time. Every site is either empty or occupied
vestigated. Standard CP in its continuous time version is &y a single particle. There is a chance for a vacant site to be
lattice model in which every empty site is occupied by aoccupied provided there are occupied sites in its nearest
particle with ratexn/z and every particle is removed with neighborhood. A new patrticle is born in an empty site with
rate one, whereis the coordination numben,is the number rate n/2 (n is the number of occupied nearest neighlors
of occupied nearest neighbors, axds a positive parameter Every particle will die exactly at time after its birth.
controlling the creation rate. The system has a second-order Obviously there must be a phase transition in the system
critical point atA,=3.2978 and it belongs to the DP class with density of the particles as the order parameter. For small
[2]. values of 7, particles die fast and eventually the system is

In this model | introduce anemoryfor each particle; ev- trapped in its absorbing state. For largg, particles have a
ery particle knows when it has been created. Like standartarge lifetime and sufficiently reproduce others to keep the
CP, every site is being occupied by a particle at a rate prosystem active. Figure 1 shows a single cluster in a realization
portional to the number of its occupied nearest neighborspf the model forr=3.5 and up tat=100. As can be seen,

Il. MODEL
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dPt_
ar -~ Pl=p)—p-Al=pr)  (1>7), ©)

where the second term is the rate of annihilation at ttme
equal to the rate of creation at tinte- 7. This equation is
true for t>7. | assume that all existing particles &t 0
gradually die during the time intervéD,r). So fort<r we
have

dpy
E:pt(l_pt)_pO/T (t=17). (7)

This equation can be rewritten in the integral form. First
by integrating Eq(7),

FIG. 1. Atypical space-time cluster started with a single particle t )
in the origin for 7=3.5 and up ta=100. pt= fopt’(l_pt’)dt —pot/T+pg (t=7) 8

every particle has a definite lifetime and here the system is i%specially fort=1r,
its active state.

Like CP, here the creation process is not history depen- 7
dent, however, the death process is, and thus we have a non- Pt=r= fo pr(1—py)dt’. 9
Markovian process. To find out that how many particles are
r_emoved at each moment, we sh(_)uld know how many par- By integrating Eq.(6) and making use of Eq9) we find
ticles had been created at timesarlier. Therefore, a knowl-
edge of only the present state of the system is not enough to t
find out future states. pt= ft_Tpt’(l_pt’)dt, (t>7). (10

Ill. MEAN-FIELD EQUATION It is a definite integral with a time-dependent lower and up-
per limit. So although the integrand is non-negatipé€t)
may have a honmonotonic behavior.

Finding stationary density is not possible in the differen-
tial equation. Settinglp,/dt=0 leads to nothing more than
pt=1—pi_, or p;=p;_,. The former is irrelevant in the
steady state and the latter is correct for every valug.of
However, by setting,= p;»=p in the integral equatiofiEq.
(10)], it turns out that

(o1(X)oo(X+1))x ) =0 (11

Let o1(X) and og(x) denote the state of site andp be
the density of particlesr,(x) is 1 if the site is occupied and
0 if it is vacant, and we have

p=(01(X))x=1=(0o0(X))x. )

Therefore, the rate of reproduction is

and it can be written in terms of the density-vacancy correy,
lation function (the correlation of the occupied and vacant

site9 p=1-1/r. (12

(g1(X)oo(X+ 8))x—p(1—p) 3 Thus there is a phase transitionzat .= 1.
p(1—p) '

Hence the rate of reproduction is

Cio(0)=

IV. OSCILLATIONS

It is observed that the density of particlpsundergoes

rpd(1—py), (4) damped oscillations while approaching the stationary state.
The solid line in Fig. 2 shows one such oscillatory evolution
where of p. Simulations are done in a lattice of 10000 sites with
periodic boundary condition. The plotted curves are averaged
r=1+Cqo(6=1). (5) over 100 realizations for=7. A period of oscillation is

slightly greater tharr. These kinds of oscillations are present
Obviously C,o(6=1) is negative(a particle reduces the for all values ofr, but they are weaker for smaller
chance of its nearest neighbors to be vagaand thusr The oscillatory behavior can be understood by paying at-
<1. In the mean-field approximation the correlation is ne-tention to the history-dependence feature of the model. Since
glected and we put=1. Therefore, the mean-field equation every particle dies at age the time evolution at time is
will be coupled to the state of the system at titrer. A high cre-
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FIG. 2. Density of particles vs time for non-Markovian CP in 0.002 0.004 0.006 0.008 0.01
the real model(solid line) and in the mean-field approximation 1/t
(dashed lingfor 7=7 andp,=0.75. 015
ation rate at time is equivalent to a high annihilation rate at -0.155 ¢ 1
timet+ 7. So, an increase in the density at tilnean lead to 0.6 | W
a decrease in it at some time later and naturally the period of
the oscillations is of order. *©0-0.165 | ]
These oscillations are also supported by the mean-field 047 |
approximation. The mean-field equation is a delayed nonlin-
ear first-order differential equation that is able to have oscil- -0.175 ¢
latory solutions which do not exist in ordinary first-order 048 ‘ , , ‘
differential equations. Figure @ashed ling shows one of 70.002 0.004 0006 0008 001 0012
these oscillatory solutions far="7. Periods of oscillations in 1/t
the real model and the mean-field approximation are the 133
same. 132 |
The delay time in the mean-field differential equation can 131 |
be eliminated by a Taylor expansion pf_.. It basically 1.3 ¢
contains derivatives up to infinite order. In fact, here we have 129 ¢
an infinite-order differential equation which is naturally able N 1:23 !
to demonstrate many complex behaviors. As in simulations, 106 |
oscillatory behavior is sensitive to changes in the value. of 1.25
It disappears for small enough values ofand it is less 124 |

123
1.22

damped for largetrs.

0.004 0.005 0.006 0.007 0.008 0.009
1/t

In this section | will present the results concerning the FIG. 3. D.ynamlcal critical exponents as functions df Differ-
ent curves in each panel correspond, from top to bottomr to

critical behavior of the system obtained from simulating the .
model. Simulation is ma)tlje using the time-dependent I\%Ionte=3'06’ 3.07, and 3.08, respectively.
Carlo method 15]. In this method, the simulation is started
with the system in a state very close to the absorbing state,
i.e., all the sites are vacant except the one in the origin which
is occ_upied. The age of this single particle is ini_tially_ setto 0.4 at criticality the log-log plot of these functions should
The sites are updated parallel and after every time incrementsymntotically become a straight line with the slope equal to
All existing particles become older by that amount. They diejhe gynamical critical exponents. The local slopes for the

after growing up to age. , , survival probabilityP(t) are defined by
| measured the average population of partidigs), av-

eraged over all realization®(t), the probability of not en-
tering the absorbing state up to tirheandR?(t) the mean- S
square spreading distance. As a result of the scaling

hypothesig[15], at criticality, these quantities should scale
algebraically as

V. CRITICAL BEHAVIOR

R2(t)~t% (19

In[P(t)/P(t/b)]
B In(b)

(16)

and similarly for the other exponents. | usually use 15.
Away from criticality there are either upward or downward

N(t)~17, (13 curvatures in the log-log plot of functions vand also in the
plot of the critical exponents vs t1/depending upon the
P(t)~t~?, (14 super- or subcriticality of the system. By detecting the
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straight line from the curved lines, the value gf can be  when they are born and determines when they will be anni-
evaluated with good precision. Having, the critical expo- hilated. Interesting oscillatory behaviors are observed in den-
nents can also be found. sity of particles and the same oscillations are also present in
Simulations are typically done up to time 40@ithough  the mean-field approximation. Because of the non-
many runs enter the absorbing state earkeith a time in-  Markovian property of the model there is a time delay in the
crement of 0.004 for continuous-time simulation. Obviously,mean-field first-order differential equation which allows it to
this is equal to the maximum precision possible in determingemonstrate oscillatory behaviors.
ing 7. Statist.ical quantit.ies.have been generally averaged Applying a time-dependent Monte Carlo technique, criti-
over 10000 different realizations of the model. _cal properties of the absorbing phase transition have been
Figure 3 shows the results of the dynamical S'm“|at'°”5investigated and shown to belong to the DP universality

In different panels local slopes as defined in EI6) for  cj55q The DP class is extended to contain a non-Markovian
different dynamical critical exponents have been depicte odel

against 1. The best estimation for the critical age based on
these graphs is;=3.071). For thecritical exponents |
found »=0.3041), 6=0.16531), andz=1.2741). These
critical exponents are in good agreement with those of DP
and thus the system belongs to the DP class.

ACKNOWLEDGMENTS

The author would like to thank M. R. Ejtehadi and H.
Hinrichsen for a critical reading of the manuscript and stimu-
lating comments and Stephan Haas for valuable support.

In summary, a non-Markovian version of the contact pro-This work was supported by National Science Foundation
cess is introduced. Particles have an age which describ&srant No. DMR-0089882.

VI. CONCLUSION

[1] H. Hinrichsen, Adv. Phys49, 1 (2000. Lett. 85, 1803(2000.
[2] J. Marro and R. DickmariNonequilibrium Phase Transitions [10] R. Pastor-Satorras and A. Vespignani, Phys. Re§2ER5875
in Lattice Models(Cambridge University, Cambridge, 1999 (2000.
[3] P. Grassberger, Z. Phys. &, 365(1982. [11] T. Ohira and T. Yamane, Phys. Rev.6f, 1247(2000.
[4] H. K. Janssen, Z. Phys. 82, 151(1981). [12] R. Gerami and M. R. Ejtehadi, Eur. Phys. J18 601(2000.
[5] A. G. Moreira and R. Dickman, Phys. Rev. &, R3090  [13] T. E. Harris, Ann. Prob2, 969 (1974.
(1996. [14] S. N. Dorogovtsev and J. F. F. Mendes, Phys. Re\63E
[6] I. Jensen, Phys. Rev. Left0, 1465(1993. 046107(2001).
[7]1. Jensen and R. Dickman, Phys. Rev4& 1710(1993. [15] P. Grassberger and A. de la Torre, Ann. PIY.) 122, 373
[8] H. Hinrichsen, Phys. Rev. B5, 219(1997. (1979

[9] M. Rossi, R. Pastor-Satorras, and A. Vespignani, Phys. Rev.

036102-4



