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Criticality and oscillatory behavior in non-Markovian contact process
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A non-Markovian generalization of a one-dimensional contact process is being introduced in which every
particle has an age and will be annihilated at its maximum aget. There is an absorbing state phase transition
which is controlled by this parameter. The model can demonstrate oscillatory behavior in its approach to the
stationary state. These oscillations are also present in the mean-field approximation, which is a first-order
differential equation with time delay. Studying dynamical critical exponents suggests that the model belongs to
the direct percolation universality class.
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I. INTRODUCTION

Studying phase transitions in the systems far from eq
librium has been a topic of growing interest in recent ye
@1,2#. In particular, systems with absorbing states which c
not evolve further once they are trapped in one such s
have been an interesting subject of research. Various mo
with one or more absorbing states have been studied w
belong to a few universality classes and mostly to that
directed percolation~DP!. According to the DP conjecture
@3,4#, every phase transition in a system with a single abso
ing state having short-range interactions with no spe
symmetry or quenched disorder@5# belongs to the DP class
There have been examples of absorbing state phase tr
tions without some of the DP conjecture conditions that s
belong to the DP class, such as systems with an infinite n
ber of absorbing states@6,7#. There have also been othe
universality classes for parity conserving systems@8# and, as
recently proposed, for systems with infinitely many abso
ing states coupled to a conserved field@9,10#.

Although the Markovian property has been implicitly a
cepted in these models it is not essential for a nonequilibr
phase transition. Usually, adding some kind of memory
the system, such that the system should refer to its histor
order to define its future, gives rise to some new interes
behaviors that are absent in Markovian systems@11,12#.
However, properties of non-Markovian nonequilibriu
phase transitions have not been studied.

In this paper a non-Markovian variant of the contact p
cess~CP! @13# is introduced and the critical behavior is in
vestigated. Standard CP in its continuous time version
lattice model in which every empty site is occupied by
particle with rateln/z and every particle is removed wit
rate one, wherez is the coordination number,n is the number
of occupied nearest neighbors, andl is a positive paramete
controlling the creation rate. The system has a second-o
critical point atlc53.2978 and it belongs to the DP cla
@2#.

In this model I introduce amemoryfor each particle; ev-
ery particle knows when it has been created. Like stand
CP, every site is being occupied by a particle at a rate p
portional to the number of its occupied nearest neighb
1063-651X/2002/65~3!/036102~4!/$20.00 65 0361
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while every existing particle will die exactly at aget. For
large values oft the particles live enough to reproduc
plenty of others and the system can remain in its active st
As t is decreased, each particle has less time to create o
particles and fort,tc the system will be trapped in its ab
sorbing state with probability 1, where there is no existi
particle and no new particles can be born.

Attributing age to the particles in the CP model has be
suggested earlier@14#, but not in a way that leads to a non
Markovian model; although some interesting alterations
the dynamical behavior of the system have been observ

Non-Markovian property gives rise to some oscillations
the density of particles. These oscillations are also suppo
by the mean-field approximation. Because of the no
Markovian property of the system, there is a delay param
in the mean-field equation and this reproduces the oscilla
solutions observed in the simulations. By the mean-field
proach, existence of the phase transition is justified an
critical age can be found, but like standard CP the criti
behavior is not described completely.

In this paper, the critical behavior of the model is studi
using the time-dependent Monte Carlo method. The criti
dynamical exponents has been calculated, and shown to
good agreement with those of DP.

II. MODEL

The model is defined on a one-dimensional lattice a
with continuous time. Every site is either empty or occupi
by a single particle. There is a chance for a vacant site to
occupied provided there are occupied sites in its nea
neighborhood. A new particle is born in an empty site w
rate n/2 ~n is the number of occupied nearest neighbor!.
Every particle will die exactly at timet after its birth.

Obviously there must be a phase transition in the sys
with density of the particles as the order parameter. For sm
values oft, particles die fast and eventually the system
trapped in its absorbing state. For larget’s, particles have a
large lifetime and sufficiently reproduce others to keep
system active. Figure 1 shows a single cluster in a realiza
of the model fort53.5 and up tot5100. As can be seen
©2002 The American Physical Society02-1
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every particle has a definite lifetime and here the system i
its active state.

Like CP, here the creation process is not history dep
dent, however, the death process is, and thus we have a
Markovian process. To find out that how many particles
removed at each moment, we should know how many p
ticles had been created at timet earlier. Therefore, a knowl
edge of only the present state of the system is not enoug
find out future states.

III. MEAN-FIELD EQUATION

Let s1(x) ands0(x) denote the state of sitex, andr be
the density of particles.s1(x) is 1 if the site is occupied and
0 if it is vacant, and we have

r5^s1~x!&x512^s0~x!&x . ~1!

Therefore, the rate of reproduction is

^s1~x!s0~x11!&x ~2!

and it can be written in terms of the density-vacancy cor
lation function ~the correlation of the occupied and vaca
sites!

C10~d!5
^s1~x!s0~x1d!&x2r~12r!

r~12r!
. ~3!

Hence the rate of reproduction is

rr t~12r t!, ~4!

where

r 511C10~d51!. ~5!

Obviously C10(d51) is negative~a particle reduces the
chance of its nearest neighbors to be vacant!, and thusr
,1. In the mean-field approximation the correlation is n
glected and we putr 51. Therefore, the mean-field equatio
will be

FIG. 1. A typical space-time cluster started with a single parti
in the origin fort53.5 and up tot5100.
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dr t

dt
5r t~12r t!2r t2t~12r t2t! ~ t.t!, ~6!

where the second term is the rate of annihilation at timet,
equal to the rate of creation at timet2t. This equation is
true for t.t. I assume that all existing particles att50
gradually die during the time interval~0,t!. So for t,t we
have

dr t

dt
5r t~12r t!2r0 /t ~ t<t!. ~7!

This equation can be rewritten in the integral form. Fi
by integrating Eq.~7!,

r t5E
0

t

r t8~12r t8!dt82r0t/t1r0 ~ t<t! ~8!

especially fort5t,

r t5t5E
0

t

r t8~12r t8!dt8. ~9!

By integrating Eq.~6! and making use of Eq.~9! we find

r t5E
t2t

t

r t8~12r t8!dt8 ~ t.t!. ~10!

It is a definite integral with a time-dependent lower and u
per limit. So although the integrand is non-negative,r(t)
may have a nonmonotonic behavior.

Finding stationary density is not possible in the differe
tial equation. Settingdr t /dt50 leads to nothing more tha
r t512r t2t or r t5r t2t . The former is irrelevant in the
steady state and the latter is correct for every value ofr̄.
However, by settingr t5r t85 r̄ in the integral equation@Eq.
~10!#, it turns out that

r̄50 ~11!

or

r̄5121/t. ~12!

Thus there is a phase transition att5tc51.

IV. OSCILLATIONS

It is observed that the density of particlesr undergoes
damped oscillations while approaching the stationary st
The solid line in Fig. 2 shows one such oscillatory evoluti
of r. Simulations are done in a lattice of 10 000 sites w
periodic boundary condition. The plotted curves are avera
over 100 realizations fort57. A period of oscillation is
slightly greater thant. These kinds of oscillations are prese
for all values oft, but they are weaker for smallert.

The oscillatory behavior can be understood by paying
tention to the history-dependence feature of the model. S
every particle dies at aget, the time evolution at timet is
coupled to the state of the system at timet2t. A high cre-
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ation rate at timet is equivalent to a high annihilation rate
time t1t. So, an increase in the density at timet can lead to
a decrease in it at some time later and naturally the perio
the oscillations is of ordert.

These oscillations are also supported by the mean-fi
approximation. The mean-field equation is a delayed non
ear first-order differential equation that is able to have os
latory solutions which do not exist in ordinary first-ord
differential equations. Figure 2~dashed line! shows one of
these oscillatory solutions fort57. Periods of oscillations in
the real model and the mean-field approximation are
same.

The delay time in the mean-field differential equation c
be eliminated by a Taylor expansion ofr t2t . It basically
contains derivatives up to infinite order. In fact, here we ha
an infinite-order differential equation which is naturally ab
to demonstrate many complex behaviors. As in simulatio
oscillatory behavior is sensitive to changes in the value ot.
It disappears for small enough values oft and it is less
damped for largert’s.

V. CRITICAL BEHAVIOR

In this section I will present the results concerning t
critical behavior of the system obtained from simulating t
model. Simulation is made using the time-dependent Mo
Carlo method@15#. In this method, the simulation is starte
with the system in a state very close to the absorbing st
i.e., all the sites are vacant except the one in the origin wh
is occupied. The age of this single particle is initially set to
The sites are updated parallel and after every time increm
All existing particles become older by that amount. They
after growing up to aget.

I measured the average population of particlesN(t), av-
eraged over all realizations,P(t), the probability of not en-
tering the absorbing state up to timet, andR2(t) the mean-
square spreading distance. As a result of the sca
hypothesis@15#, at criticality, these quantities should sca
algebraically as

N~ t !;th, ~13!

P~ t !;t2d, ~14!

FIG. 2. Density of particles vs time for non-Markovian CP
the real model~solid line! and in the mean-field approximatio
~dashed line! for t57 andr050.75.
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R2~ t !;tz. ~15!

So at criticality the log-log plot of these functions shou
asymptotically become a straight line with the slope equa
the dynamical critical exponents. The local slopes for
survival probabilityP(t) are defined by

d~ t !52
ln@P~ t !/P~ t/b!#

ln~b!
~16!

and similarly for the other exponents. I usually useb515.
Away from criticality there are either upward or downwa
curvatures in the log-log plot of functions vst and also in the
plot of the critical exponents vs 1/t, depending upon the
super- or subcriticality of the system. By detecting t

FIG. 3. Dynamical critical exponents as functions of 1/t. Differ-
ent curves in each panel correspond, from top to bottom, tt
53.06, 3.07, and 3.08, respectively.
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straight line from the curved lines, the value oftc can be
evaluated with good precision. Havingtc , the critical expo-
nents can also be found.

Simulations are typically done up to time 400~although
many runs enter the absorbing state earlier! with a time in-
crement of 0.004 for continuous-time simulation. Obvious
this is equal to the maximum precision possible in determ
ing tc . Statistical quantities have been generally avera
over 10 000 different realizations of the model.

Figure 3 shows the results of the dynamical simulatio
In different panels local slopes as defined in Eq.~16! for
different dynamical critical exponents have been depic
against 1/t. The best estimation for the critical age based
these graphs istc.3.07(1). For the critical exponents I
foundh50.304(1), d50.1653(1), andz51.272(1). These
critical exponents are in good agreement with those of
and thus the system belongs to the DP class.

VI. CONCLUSION

In summary, a non-Markovian version of the contact p
cess is introduced. Particles have an age which descr
s

e
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when they are born and determines when they will be an
hilated. Interesting oscillatory behaviors are observed in d
sity of particles and the same oscillations are also presen
the mean-field approximation. Because of the no
Markovian property of the model there is a time delay in t
mean-field first-order differential equation which allows it
demonstrate oscillatory behaviors.

Applying a time-dependent Monte Carlo technique, cr
cal properties of the absorbing phase transition have b
investigated and shown to belong to the DP universa
class. The DP class is extended to contain a non-Markov
model.
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